Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Emerg Infect Dis ; 29(6): 1136-1142, 2023 06.
Article in English | MEDLINE | ID: covidwho-2291962

ABSTRACT

SARS-CoV-2 can infect domestic animals such as cats and dogs. The zoonotic origin of the disease requires surveillance on animals. Seroprevalence studies are useful tools for detecting previous exposure because the short period of virus shedding in animals makes detection of the virus difficult. We report on an extensive serosurvey on pets in Spain that covered 23 months. We included animals with exposure to SARS-CoV-2-infected persons, random animals, and stray animals in the study. We also evaluated epidemiologic variables such as human accumulated incidence and spatial location. We detected neutralizing antibodies in 3.59% of animals and showed a correlation between COVID-19 incidence in humans and positivity to antibody detection in pets. This study shows that more pets were infected with SARS-CoV-2 than in previous reports based on molecular research, and the findings highlight the need to establish preventive measures to avoid reverse zoonosis events.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Dogs , Cats , COVID-19/epidemiology , COVID-19/veterinary , Spain/epidemiology , Seroepidemiologic Studies , Zoonoses/epidemiology , Pets
2.
PLoS One ; 18(3): e0282632, 2023.
Article in English | MEDLINE | ID: covidwho-2251344

ABSTRACT

The COVID-19 pandemic and the disease triggered by the African Swine Fever virus are currently two of the main problems regarding public and animal health, respectively. Although vaccination seems to be the ideal tool for controlling these diseases, it has several limitations. Therefore, early detection of the pathogen is critical in order to apply preventive and control measures. Real-time PCR is the main technique used for the detection of both viruses, which requires previous processing of the infectious material. If the potentially infected sample is inactivated at the time of sampling, the diagnosis will be accelerated, impacting positively on the diagnosis and control of the disease. Here, we evaluated the inactivation and preservation properties of a new surfactant liquid for non-invasive and environmental sampling of both viruses. Our results demonstrated that the surfactant liquid effectively inactivates SARS-CoV-2 and African Swine Fever virus in only five minutes, and allows for the preservation of the genetic material for long periods even at high temperatures such as 37°C. Hence, this methodology is a safe and useful tool for recovering SARS-CoV-2 and African Swine Fever virus RNA/DNA from different surfaces and skins, which has significant applied relevance in the surveillance of both diseases.


Subject(s)
African Swine Fever Virus , African Swine Fever , COVID-19 , Pulmonary Surfactants , Animals , Swine , Humans , African Swine Fever/diagnosis , African Swine Fever/epidemiology , African Swine Fever/prevention & control , COVID-19/diagnosis , COVID-19/epidemiology , African Swine Fever Virus/genetics , Pandemics/prevention & control , SARS-CoV-2/genetics , Surface-Active Agents , COVID-19 Testing
4.
Front Vet Sci ; 9: 940710, 2022.
Article in English | MEDLINE | ID: covidwho-2009919

ABSTRACT

The emergence of the Omicron variant (B.1. 1.529) has brought with it an increase in the incidence of SARS-CoV-2 disease. However, there is hardly any data on its incidence in companion animals. We have detected the presence of this new variant in domestic animals (dogs and cats) living with infected owners in Spain. None of the RT-qPCR positive animals (10.13%) presented any clinical signs and the viral loads detected were low. In addition, the shedding of viral RNA lasted a short period of time in the positive animals. Infection with this variant of concern (VOC) was confirmed by RT-qPCR and sequencing. These outcomes suggest a lower virulence of this variant in infected cats and dogs. They also demonstrate the transmission from infected humans to domestic animals and highlight the importance of active surveillance as well as genomic research to detect the presence of VOCs or mutations associated with animal hosts.

5.
Sci Total Environ ; 844: 157241, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2004484

ABSTRACT

Air pollution and associated particulate matter (PM) affect environmental and human health worldwide. The intense vehicle usage and the high population density in urban areas are the main causes of this public health impact. Epidemiological studies have provided evidence on the effect of air pollution on airborne SARS-CoV-2 transmission and COVID-19 disease prevalence and symptomatology. However, the causal relationship between air pollution and COVID-19 is still under investigation. Based on these results, the question addressed in this study was how long SARS-CoV-2 survives on the surface of PM from different origin to evaluate the relationship between fuel and atmospheric pollution and virus transmission risk. The persistence and viability of SARS-CoV-2 virus was characterized in 5 engine exhaust PM and 4 samples of atmospheric PM10. The results showed that SARS-CoV-2 remains on the surface of PM10 from air pollutants but interaction with engine exhaust PM inactivates the virus. Consequently, atmospheric PM10 levels may increase SARS-CoV-2 transmission risk thus supporting a causal relationship between these factors. Furthermore, the relationship of pollution PM and particularly engine exhaust PM with virus transmission risk and COVID-19 is also affected by the impact of these pollutants on host oxidative stress and immunity. Therefore, although fuel PM inactivates SARS-CoV-2, the conclusion of the study is that both atmospheric and engine exhaust PM negatively impact human health with implications for COVID-19 and other diseases.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Humans , Particulate Matter/analysis , SARS-CoV-2 , Vehicle Emissions
6.
Vet Res Commun ; 46(3): 837-852, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1888963

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current pandemic disease denominated as Coronavirus Disease 2019 (COVID-19). Several studies suggest that the original source of this virus was a spillover from an animal reservoir and its subsequent adaptation to humans. Of all the different animals affected, cats are one of the most susceptible species. Moreover, several cases of natural infection in domestic and stray cats have been reported in the last few months. Although experimental infection assays have demonstrated that cats are successfully infected and can transmit the virus to other cats by aerosol, the conditions used for these experiments have not been specified in terms of ventilation. We have, therefore, evaluated the susceptibility of cats using routes of infection similar to those expected under natural conditions (exposure to a sneeze, cough, or contaminated environment) by aerosol and oral infection. We have also evaluated the transmission capacity among infected and naïve cats using different air exchange levels. Despite being infected using natural routes and shed virus for a long period, the cats did not transmit the virus to contact cats when air renovation features were employed. The infected animals also developed gross and histological lesions in several organs. These outcomes confirm that cats are at risk of infection when exposed to infected people, but do not transmit the virus to other cats with high rates of air renovation.


Subject(s)
COVID-19 , Cat Diseases , Animals , COVID-19/veterinary , Cats , Disease Susceptibility/veterinary , Humans , Pandemics/veterinary , SARS-CoV-2
7.
Res Vet Sci ; 148: 52-64, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1867752

ABSTRACT

Of the numerous animal species affected by the SARS-CoV-2 virus, cats are one of the most susceptible, and cat-to-cat transmission has been described. Although cat-to-human infection has not, as yet, been demonstrated, preventive measures should be taken in order to avoid both viral infection in cats and transmission among them. In this respect, the application of an effective vaccine to at-risk populations would be a useful tool for controlling the disease in this species. Here, we test a new vaccine prototype based on the Spike protein of the virus in order to prevent infection and infectious virus shedding in cats. The vaccine employed in experimentation, and which is easily produced, triggered a strong neutralizing antibody response in vaccinated animals. In contrast to that which occurred with control animals, no infectious virus was detected in the oropharyngeal or rectal swabs of vaccinated cats submitted to a SARS-CoV-2 challenge. These results are of great interest as regards future considerations related to implementing vaccination programs in pets. The value of cats as vaccination trial models is also described herein.


Subject(s)
COVID-19 , Cat Diseases , Animals , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19/veterinary , Cat Diseases/prevention & control , Cats , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Subunit , Virus Shedding
8.
Front Vet Sci ; 9: 841430, 2022.
Article in English | MEDLINE | ID: covidwho-1792860

ABSTRACT

Natural and experimental SARS-CoV-2 infection in pets has been widely evidenced since the beginning of the COVID-19 pandemic. Among the numerous affected animals, cats are one of the most susceptible species. However, little is known about viral pathogenicity and transmissibility in the case of variants of concern (VOCs) in animal hosts, such as the B.1.617.2 (Delta) variant first detected in India. Here, we have identified the B.1.617.2 (Delta) VOC in a cat living with a COVID-19 positive owner. The animal presented mild symptoms (sneezing) and a high viral load was detected in the oropharyngeal swab, suggesting that an active infection was occurring in the upper respiratory tract of the cat. Transmission from the owner to the cat occurred despite the human being fully vaccinated against SARS-CoV-2. This study documents the first detection of B.1.165.2 VOC in a cat in Spain and emphasizes the importance of performing active surveillance and genomic investigation on infected animals.

9.
Transbound Emerg Dis ; 69(4): e759-e774, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1488272

ABSTRACT

The disease produced by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is currently one of the primary concerns worldwide. Knowing the zoonotic origin of the disease and that several animal species, including dogs and cats, are susceptible to viral infection, it is critical to assess the relevance of pets in this pandemic. Here, we performed a large-scale study on SARS-CoV-2 serological and viral prevalence in cats and dogs in Spain in order to elucidate their role and susceptibility. Samples from animals in contact with COVID-19 positive people and/or compatible symptoms (n = 492), as well as from random animals (n = 1024), were taken. Despite the large number of animals analyzed, only 12 animals (eight dogs and four cats), which represents 0.79% of the total analyzed animals (n = 1516), were positive for viral SARS-CoV-2 RNA detection by reverse transcription quantitative PCR (RT-qPCR) in which viral isolation was possible in four animals. We detected neutralizing antibodies in 34 animals, four of them were also positive for PCR. This study evidences that pets are susceptible to SARS-CoV-2 infection in natural conditions but at a low level, as evidenced by the low percentage of positive animals detected, being infected humans the main source of infection. However, the inclusion of animals in the surveillance of COVID-19 is still recommended.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Dog Diseases/epidemiology , Dogs , Humans , Prevalence , RNA, Viral/genetics , SARS-CoV-2 , Spain/epidemiology
10.
Viruses ; 13(7)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1314764

ABSTRACT

Natural SARS-CoV-2 infection in pets has been widely documented during the last year. Although the majority of reports suggested that dogs' susceptibility to the infection is low, little is known about viral pathogenicity and transmissibility in the case of variants of concern, such as B.1.1.7 in this species. Here, as part of a large-scale study on SARS-CoV-2 prevalence in pets in Spain, we have detected the B.1.1.7 variant of concern (VOC) in a dog whose owners were infected with SARS-CoV-2. The animal did not present any symptoms, but viral loads were high in the nasal and rectal swabs. In addition, viral isolation was possible from both swabs, demonstrating that the dog was shedding infectious virus. Seroconversion occurred 23 days after the first sampling. This study documents the first detection of B.1.1.7 VOC in a dog in Spain and emphasizes the importance of performing active surveillance and genomic investigation on infected animals.


Subject(s)
COVID-19/veterinary , Dog Diseases/diagnosis , Dog Diseases/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Dogs , Genome, Viral , Male , Mutation , SARS-CoV-2/genetics , Sequence Analysis, DNA , Spain/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Viral Zoonoses/diagnosis , Viral Zoonoses/virology
11.
Emerg Infect Dis ; 27(7): 1994-1996, 2021 07.
Article in English | MEDLINE | ID: covidwho-1278361

ABSTRACT

We found severe acute respiratory syndrome coronavirus 2 RNA in 6 (8.4%) of 71 ferrets in central Spain and isolated and sequenced virus from 1 oral and 1 rectal swab specimen. Natural infection occurs in kept ferrets when virus circulation among humans is high. However, small ferret collections probably cannot maintain virus circulation.


Subject(s)
COVID-19 , Ferrets , Animals , Humans , SARS-CoV-2 , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL